

Anlage 4

Landkreis Sigmaringen

Bauherr - Gemeinde Hohentengen

HOCHWASSERSCHUTZ VÖLLKOFEN UND BAU EINES HOCHWASSERRÜCKHALTEBECKENS

Projekt Nr.: 88367.002

HAUPTDATEN DES GEPLANTEN HRB

Allgemeines

Topografische Karte TK 25

Rechts-/ Hochwert (Dammachse / Grundablass)

St. 293.76,062 / 53.184.90,867

Klassifizierung

HRB kleine Becken

max. Absperrbauwerk 6,00 m oder Speichergröße 100.000 m³

BHQ₂ = HQ₅₀₀₀ = HQ₁₀₀ \times f₅₀₀₀ \times f_{KF} = 2,30 \times 2,00 \times 1,00 =

Anlagentyp geplanter steuerbarer Hauptschluss
Hauptzweck Hochwasserschutz
Nebenzweck keine
Dauerstau nein

Hydrologie

Hauptgewässer	Färbebach
Einzugsgebietsgröße	13,30 km²
Dauerstau	0 m³
gewöhnlicher Hochwasserrückhalteraum IGHR	94.000 m³
Außergewöhnlicher Hochwasserrückhalteraum IAHR1	131.000 m³
Außergewöhnlicher Hochwasserrückhalteraum IAHR2	141.000 m ³

Abflüsse

HQ ₁₀₀ (ohne Klimafaktor)	$2,30 \text{ m}^3/\text{s}$
Klimazuschlag auf Regen berücksichtigt (bei ja bitte Faktor angeben)	1,15
HQ _{100 KF} = (mit Klimafaktor)	$2,97 \text{ m}^3/\text{s}$
Extremwerte	
$BHQ_1 = HQ_{500} = HQ_{100} \times f_{500} \times f_{KF} = 2,30 \times 1,35 \times 1,06 =$	$3,20 \text{ m}^3/\text{s}$

 $4.60 \text{ m}^3/\text{s}$

 $BHQ_3 = HQ_{100 \text{ KF}} \text{ (mit Klimafaktor)} \\ Schutzgrad der Anlage \\ Regelabfluss nach dem HRB \\ 2,97 \text{ m}^3/\text{s} \\ 100 \text{ a} \\ 0 - 1,10 \text{ m}^3/\text{s} \\ 100 \text{$

Absperrbauwerk

Art des Absperrbauwerks Erddamm

Homogener Erddamm (ehemaliger Weiherdamm)

Dammkronenhöhe OK Böschung (Weg)597,15 m ü. NNDammkronenbreite5,60 mBreite Dammkronenweg2,90 mDammkronenlänge170 m

Talsohle (Luftseite) 592,20 m ü. NN

Maximale Dammhöhe (Sohle Grundablass – OK Weg) 6,00 m

Höhe des geplanten Schachtbauwerks (Gründungssohle bis Bedienpodest) 5,85 m

Böschungsneigung Wasserseite/ Luftseite 1:5 / 1:1,5

Entlastungsbauwerk

Funktionen Drosselung des Hochwasserabflusses
Gewässersohle 591,15 m ü. NN
Gründungssohle 590,25 m ü. NN
Bauwerkslänge 4,20 m
Bauwerksbreite 3,40 m

Grundablass mit Gleitschütz (Handbetrieb)

Lichte Öffnungsmaße (B x H)

Grundablass- / Hochwasserentlastungleitung

Naturnahe Sohlenausbildung des Grundablasses (lichte Höhe)

Sohlenhöhe Einlauf

Sohlenhöhe Auslauf

0,70 x 0,70 m

DN 1600 mm

1,20 m

591,15 m ü. NN

Hochwasserentlastung

HWEA-Typ Überlaufschwelle

Hochwasserentlastung im Entlastungsbauwerk integriert

Überfalllänge (Entlastungsbauwerk 2 x 3,00 m + 2 x 1,25 m) 8,50 m Höhe der Überfallkante 595,30 m ü. NN

Freibord

Dammkronenhöhe Wasserseite	597,15 m ü. NN
Stauziel bei Hochwasser	595,30 m ü. NN
Freibord bei Stauziel	1,85 m
Überfallhöhe bei BHQ ₁ = HQ ₅₀₀ = 3,20 m^3/s	595,71 m ü. NN
Freibord f ₁ bei BHQ ₁	1,44 m

K:\88367\005\GEN\1104_HRB_Daten.docx

Überfallhöhe bei BHQ ₂ = HQ ₅₀₀₀ = 4,60 m ³ /s	595,82 m ü. NN
Freibord f ₂ bei BHQ ₂	1,33 m

Überfallhöhe bei BHQ $_3$ = HQ $_{100}$ = 2,30 m 3 /s 595,63 m ü. NN Freibord f $_3$ bei BHQ $_3$ 1,52 m

Stauziele

Vollstau Z _V	595,30 m ü. NN
Hochwasserstauziel Z _{H1}	595,71 m ü. NN
Hochwasserstauziel Z _{H2}	595,82 m ü. NN
Dauerstauziel $Z_S = Z_D$	- m ü. NN

Volumen

gewöhnlicher HW Rückhalteraum I _{GHR}	94.000 m ³
Außergewöhnliche HW Rückhalteraum 1 I _{AHR1}	37.000 m ³
Außergewöhnliche HW Rückhalteraum 2 I _{AHR2}	47.000 m ³
Dauerstauraum I _{BR}	0 m^3

<u>Fläche</u>

gewöhnliche HW Fläche F_V 7,60 ha

K:\88367\005\GEN\1104_HRB_Daten.docx